found on comparing the two complexes, are small but sufficient to justify the increase of the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation from $3.51 \AA$ in the previous complex to 3.566 (2) \AA in the present one. This separation is the greatest found in $\mathrm{Cu}^{\mathrm{II}}$ complexes with 3,6-di(2-pyridyl)pyridazine.

The coordinating water molecule forms an intramolecular hydrogen bond with the apical Cl atom $[\mathrm{O}(1)-\mathrm{H}(1 w) \cdots \mathrm{Cl}(3) 3 \cdot 152(8), \mathrm{H}(1 w) \cdots \mathrm{Cl}(3)$ 2.28 (7) $\AA, \quad \mathrm{O}(1)-\mathrm{H}(1 w) \cdots \mathrm{Cl}(3) \quad 148(6)^{\circ} \mathrm{J}$ and an intermolecular one with the apical Cl atom of a second dinuclear complex $[\mathrm{O}(1)-\mathrm{H}(2 w) \cdots \mathrm{Cl}(3)(2-x, \bar{y}, 1-$ z) $3 \cdot 115(8), \mathrm{H}(2 w) \cdots \mathrm{Cl}(3) 2 \cdot 15(8) \AA, \mathrm{O}(1)-\mathrm{H}(2 w) \cdots$ $\left.\mathrm{Cl}(3) 153(6)^{\circ}\right]$. There are also two contacts relevant for packing, the geometries of which satisfy the requirements for hydrogen bonds (Berkovitch-Yellin \& Leiserowitz, 1984): C(4)-H(4)…O(1)(x,y-1, z) $3.30(1), \quad \mathrm{H}(4) \cdots \mathrm{O}(1) \quad 2.3(1) \AA, \quad \mathrm{C}(4)-\mathrm{H}(4) \cdots \mathrm{O}(1)$ $146(9)^{\circ}$, and $\mathrm{C}(8)-\mathrm{H}(8) \cdots \mathrm{Cl}(1)\left(x, \quad \bar{y}-\frac{1}{2}, \quad z-\frac{1}{2}\right)$ $3.50(1), \quad \mathrm{H}(8) \cdots \mathrm{Cl}(1) 2 \cdot 4(1) \AA, \mathrm{C}(8)-\mathrm{H}(8) \cdots \mathrm{Cl}(1)$ 165 (9) ${ }^{\circ}$.

References

Berkovitch-Yellin, Z. \& Leiserowitz, L. (1984). Acta Cryist. B40. 159-165.
Brown, J. M., Powers, L., Kincaid, B., Larrabee, J. A. \& Spiro. T. G. (1980). J. Am. Chem. Soc. 102, 4210-4216.

Co. M. S., Hodgson, K. O., Eccles, T. K. \& Lontie, R. (1981). J. Am. Chem. Soc. 103, 984-986.
Dapporto, P., De Munno, G., Bruno, G. \& Romeo, M. (1983). Acta Cryst. C39, 718-720.
Dapporto, P., De Munno, G., Sega, A. \& Mealli. C. (1984). Inorg. Chim. Acta, 83, 171-176.
de Munno, G., Denti, G. \& Dapporto. P. (1983). Inorg. Chim. Acta, 74. 199-203.
Ghedini. M.. De Munno. G., Denti, G.. Manotti Lanfredi. A. M. \& Tiripicchio, A. (1982). Inorg. Chim. Acta, 57, 87-93.

Hamilton, W. C. (1959). Acta Cryst. 12. 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Sheldrick. G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge. England.
Stewart, J. M.. Kundell. F. A. \& Baldwin. J. C. (1970). The XRA Y70 system. Computer Science Center. Univ. of Maryland. College Park. Maryland.
Stewart, R. F.. Davidson. E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1984). C40, 2024-2026

μ-Oxo-1,1,1,2,2,2-hexaoxo-1,1,2-tris(pyridine)dirhenium(VII), $\left[\mathrm{Re}_{2} \mathrm{O}_{7}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$: Variability of the Coordination Number of $\mathrm{Re}^{\text {VII }}$

By Jack W. Johnson* and J. F. Brody
Corporate Research - Science Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801, USA

and G. B. Ansell* and S. Zentz
Analytical and Information Division, Exxon Research and Engineering Company, Annandale, New Jersey 08801. USA

(Received 27 March 1984; accepted 20 July 1984)

Abstract

M_{r}=721 \cdot 7\), monoclinic, $\quad P 2_{1} / c, \quad a=$ 9.068 (1), $\quad b=12.280$ (2), $\quad c=17.494$ (4) $\AA, \quad \beta=$ $95.02(1)^{\circ}, \quad Z=4, \quad D_{x}=2.47 \mathrm{~g} \mathrm{~cm}^{-3}, \quad D_{m} \quad$ not measured, graphite-monochromatized Mo Ka

 radiation, $\lambda=0.71073 \AA, \mu=126.8 \mathrm{~cm}^{-1}, F(000)=$ 1320, $T=293$ (2) K. Final $R=0.026$ for 1764 independent observed reflections. $\left[\mathrm{Re}_{2} \mathrm{O}_{7} \mathrm{py}_{3}\right]$ molecules contain two inequivalent rhenium atoms bridged by a single oxygen atom, $\operatorname{Re}(1)-\mathrm{O}=1.806$ (7), $\operatorname{Re}(2)-$ $\mathrm{O}=2.056$ (7) \AA. $\operatorname{Re}(1)$ is five-coordinate in a trigonal bipyramidal geometry with three oxo ligands $[\operatorname{Re}(1)-$ $\mathrm{O}=1 \cdot 695-1 \cdot 706$ (9) \AA], the bridging oxygen atom, and a pyridine nitrogen atom in its coordination sphere. $\operatorname{Re}(2)$ is six-coordinate in a distorted octahedral geometry with a fac-trioxo group $[\operatorname{Re}(2)-\mathrm{O}=1.710-$[^0]0108-2701/84/122024-03\$01.50
1.724 (9) \AA], the bridging oxygen atom, and two pyridine nitrogen atoms.

Introduction. The chemistry of oxo complexes of Re^{7+} is dominated by tetrahedral $\left[\mathrm{ReO}_{4}\right]^{-}$. A few examples of octahedral $\left[\mathrm{ReO}_{3} X_{3}\right]$ units are known in $\mathrm{Re}_{2} \mathrm{O}_{7}$ (Krebs, Müller \& Beyer, 1968, 1969), $\mathrm{Re}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Beyer, Glemser \& Krebs, 1968; Beyer, Glemser, Krebs \& Wagner, 1970), $\left[\operatorname{Re}_{2} \mathrm{O}_{6}(\mathrm{OH})_{2}(1,4 \text {-dioxane })_{3}\right]$ (Fischer \& Krebs, 1982), [$\mathrm{ReO}_{3} \mathrm{Cl}\left(2,2^{\prime}\right.$-bipyridine) $]$ (Sergienko, Khodashova, Porai-Koshits \& Butman, 1977), H_{2} phen $\left[\mathrm{ReO}_{3} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$ (Lis, 1979) and $\mathrm{Cs}_{2}\left|\mathrm{ReO}_{3} \mathrm{Cl}_{3}\right|$ (Lis, 1983).
Five-coordinate Re^{7+} compounds are known. [$\mathrm{ReO}_{2} \mathrm{~F}_{3}$] has been shown by matrix-isolation vibrational spectroscopy to have a trigonal bipyramidal ($C_{2 v}$) structure with equatorial oxygen atoms (Beattie,
(c) 1984 International Union of Crystallography

Crocombe \& Ogden, 1977). $\mathrm{ReO}_{2} \mathrm{Me}_{3}$ also has been prepared, but not structurally characterized. A trigonal bipyramidal structure (C_{s}) was proposed on the basis of the NMR and IR spectra (Mertis \& Wilkinson, 1976). We recently isolated a pyridine adduct of $\mathrm{Re}_{2} \mathrm{O}_{7}$ (Johnson, Brody, Ansell \& Zentz, 1984). Its structure, reported herein, is composed of $\left[\mathrm{Re}_{2} \mathrm{O}_{7} \mathrm{py}_{3}\right]$ molecules in which two inequivalent Re atoms exhibit the coordination numbers five and six.

Experimental. Clear crystals of $\left[\mathrm{Re}_{2} \mathrm{O}_{7}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$ were wedged into quartz capillary tubes containing a small amount of mother liquor. The tubes were sealed before removal from the dry box. $0.2 \times 0.2 \times 0.2 \mathrm{~mm}$ parallelepiped crystal, Enraf-Nonius CAD-4 diffractometer. Cell dimensions determined by centering 25 diffraction maxima $14.9<2 \theta<21.4^{\circ}$. Three check reflections measured 68 times during data collection, data corrected for 7.2% overall decay. Data corrected for absorption using ψ - scan data with transmission factors varying between 0.66 and 0.99 .5917 unique reflections measured up to $2 \theta=50^{\circ}$, range of $h k l=0 \rightarrow 10,0 \rightarrow 14$, $-20 \rightarrow 20,1764$ judged observed with $I>3 \sigma(I)$ where $I=S(C-R B)$ and $\sigma(I)=\left[S^{2}\left(C+R^{2} B\right)+(k I)^{2}\right]^{1 / 2}$, where $C=$ total counts recorded during scan, $R=2 \cdot 0, B=$ ratio of scanning time to total background, $S=$ scan rate (varied between 4 and $20^{\circ} \mathrm{min}^{-1}$) and $k=0.05$, a factor introduced to reflect instrumental stability. From these data the structure factors and their e.s.d.'s were computed using $\left|F_{o}\right|=(I / L p)^{1 / 2}$ and $\sigma\left(F_{o}\right)=$ $\sigma(I) / 2\left|F_{o}\right| \mathrm{Lp}$, where Lp is the Lorentz - polarization correction. Structure solved using Patterson and Fourier techniques. Hydrogen atoms placed in calculated positions $[d(\mathrm{C}-\mathrm{H})=1.05 \AA]$. Full-matrix least-squares refinement of non-hydrogen atoms with anisotropic temperature factors led to $R=0.026$, $R_{w}=0.031$. Final cycle of least-squares refinement contained 1764 observations and 244 variables. ($4 /$ $\sigma)_{\max }=0.2$. A final difference Fourier map showed no feature $>0.73 \mathrm{e}^{-3}$. Solution and refinement performed using Enraf-Nonius (1980) SDP.* Quantity minimized in least-squares analysis $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=\sigma\left(F_{o}\right)^{-2}$ with $\sigma\left(F_{o}\right)$ defined above.

Discussion. The final positional and thermal parameters are listed in Table 1, bond lengths and angles of the Re coordination spheres in Table 2. \dagger

[^1]The crystal structure is composed of isolated $\left[\mathrm{Re}_{2} \mathrm{O}_{7} \mathrm{py}_{3}\right]$ molecules located on general positions. The molecules, shown in Fig. 1, contain two inequivalent rhenium atoms bridged by a single oxygen atom. Each rhenium atom is bonded to three additional oxygen atoms at distances ranging from 1.695 (8) to 1.724 (9) $\AA . \operatorname{Re}(1)$ is bound to the nitrogen atom of a single pyridine ligand at a distance of $2 \cdot 44$ (1) \AA, while

Table 1. Positional and isotropic thermal parameters for $\left[\mathrm{Re}_{2} \mathrm{O}_{7}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $\left.\frac{4}{3} \right\rvert\, a^{2} B(1,1)+b^{2} B(2,2)+$ $\left.c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.

	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Re}(1)$	0.14094 (6)	0.18538 (4)	0.46611 (2)	$3 \cdot 450$ (9)
$\mathrm{Re}(2)$	$0 \cdot 20638$ (5)	0.28972 (3)	0.65739 (2)	3.028 (8)
O(1)	0.020 (1)	0.0984 (6)	0.4175 (4)	4.8 (2)
$\mathrm{O}(2)$	0.308 (1)	0.1231 (8)	0.4620 (5)	5.7 (2)
O(3)	$0 \cdot 161$ (1)	0.3052 (6)	0.4200 (5)	$5 \cdot 3$ (2)
O(4)	0.0900 (9)	0.3924 (6)	0.6246 (4)	4.3 (2)
$\mathrm{O}(5)$	0.3682 (9)	0.3136 (6)	0.6152 (5)	4.7 (2)
O(6)	0.2511 (9)	0.3235 (5)	0.7514 (4)	$4 \cdot 2$ (2)
$\mathrm{O}(7)$	0.1328 (8)	0.1879 (5)	0.5688 (4)	3.0 (1)
$\mathrm{N}(1)$	-0.097 (1)	$0 \cdot 2712$ (6)	0.4824 (5)	3.6 (2)
$\mathrm{N}(2)$	0.0049 (9)	0.2090 (6)	0.7022 (5)	2.6 (2)
N(3)	0.304 (1)	0.1234 (7)	0.6969 (5)	$3 \cdot 5$ (2)
$\mathrm{C}(1)$	-0.213 (2)	0.2073 (9)	0.5019 (8)	$5 \cdot 3$ (3)
C(2)	-0.356 (1)	0.248 (1)	0.5079 (8)	5.9 (3)
C(3)	-0.383 (2)	0.355 (1)	0.4932 (9)	6.6 (4)
C(4)	-0.265 (2)	$0 \cdot 420$ (1)	0.4761 (8)	5.8 (4)
C(5)	-0.124 (1)	0.3763 (9)	0.4708 (6)	4.2 (3)
C(6)	-0.052(1)	0.1116 (8)	0.6790 (6)	$3 \cdot 3$ (2)
C(7)	-0.175 (1)	0.0665 (9)	0.7085 (7)	4.4 (3)
C(8)	-0.241 (1)	0.124 (1)	0.7633 (6)	4.3 (3)
C(9)	-0.186 (1)	0.224 (1)	0.7856 (7)	4.5 (3)
$\mathrm{C}(10)$	-0.062 (1)	0.2656 (8)	0.7559 (6)	$3 \cdot 2$ (2)
C(11)	0.373 (1)	0.0606 (8)	0.6490 (6)	3.7 (3)
C(12)	0.441 (1)	-0.036 (1)	0.6727 (8)	$4 \cdot 6$ (3)
C(13)	$0 \cdot 430$ (2)	-0.0711 (9)	0.7456 (8)	5.4 (3)
C(14)	0.356 (1)	-0.009 (1)	0.7950 (7)	4.8 (3)
C(15)	$0 \cdot 297$ (1)	0.0887 (9)	0.7677 (7)	3.9 (3)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in the Re coordination spheres

$\mathrm{Re}(1)-\mathrm{O}(1)$	1.705 (9)	$\mathrm{Re}(2)-\mathrm{O}(4)$	1.711 (8)
$\mathrm{Re}(1)-\mathrm{O}(2)$	1.706 (9)	$\mathrm{Re}(2)-\mathrm{O}(5)$	1.724 (9)
$\mathrm{Re}(1)-\mathrm{O}(3)$	1.695 (8)	$\mathrm{Re}(2)-\mathrm{O}(6)$	1.710 (8)
$\mathrm{Re}(1)-\mathrm{O}(7)$	1.806 (7)	$\mathrm{Re}(2)-\mathrm{O}(7)$	2.056 (7)
$\mathrm{Re}(1)-\mathrm{N}(1)$	2.440 (10)	$\mathrm{Re}(2)-\mathrm{N}(2)$	2.278 (9)
		$\mathrm{Re}(2)-\mathrm{N}(3)$	$2 \cdot 307$ (10)
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(1)$	103.6 (5)	$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{O}(5)$	$104 \cdot 7$ (4)
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(3)$	103.7 (5)	$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{O}(6)$	103.3 (4)
$\mathrm{O}(2)-\mathrm{Re}(1)-\mathrm{O}(7)$	99.4 (4)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(6)$	103.4 (4)
$\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{O}(3)$	113.4 (5)	$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{O}(7)$	92.6 (4)
$\mathrm{O}(1)-\mathrm{Rc}(1)-\mathrm{O}(7)$	115.3 (4)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(7)$	$90 \cdot 8$ (4)
$\mathrm{O}(3)-\mathrm{Re}(1)-\mathrm{O}(7)$	118.3 (4)	$\mathrm{O}(4)-\mathrm{Re}(2)-\mathrm{N}(2)$	86.9 (4)
$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{O}(1)$	77.9 (4)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{N}(3)$	87.8 (4)
$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{O}(3)$	79.2 (4)	$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{N}(2)$	84.5 (4)
$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{O}(7)$	76.3 (3)	$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{N}(3)$	82.8 (4)
$\mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{O}(2)$	175.6 (4)	$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{N}(2)$	77.2 (3)
$\operatorname{Re}(1)-\mathrm{O}(7)-\operatorname{Re}(2)$	$136 \cdot 2$ (4)	$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{N}(3)$	77.1 (3)
		$\mathrm{N}(2)-\operatorname{Re}(2)-\mathrm{N}(3)$	79.0 (3)
		$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{O}(6)$	155.0 (3)
		$\mathrm{N}(2)-\operatorname{Re}(2)-\mathrm{O}(5)$	163.7 (3)
		$\mathrm{N}(3)-\operatorname{Re}(2)-\mathrm{O}(4)$	164•1 (4)

$\mathrm{Re}(2)$ is bound to two pyridine molecules at $\mathrm{Re}-\mathrm{N}$ distances of 2.278 (9) and 2.31 (1) \AA. The coordination sphere around $\operatorname{Re}(1)$ is very distorted trigonal bipyramidal; the angle $\mathrm{O}(2)-\operatorname{Re}(1)-\mathrm{N}(1)$ is $175.6(4)^{\circ}$. The structure is actually quite similar to that of $\mathrm{Re}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ which is composed of molecules containing an octahedral rhenium with two coordinated water molecules and a tetrahedral rhenium without additional ligands (Beyer et al., 1968). The difference in $\left[\mathrm{Re}_{2} \mathrm{O}_{7} \mathrm{py}_{3}\right]$ is that an additional pyridine ligand is coordinated to a tetrahedral face of the otherwise four-coordinate rhenium. The observed $\mathrm{Re}-\mathrm{N}$ distance of 2.44 (1) \AA is about $0.15 \AA$ longer than the $\operatorname{Re}-\mathrm{N}$ distances of the octahedral $\operatorname{Re}(2)$. This difference in $\mathrm{Re}-\mathrm{N}$ bond lengths is balanced by the difference in the $\mathrm{Re}-\mathrm{O}$ bond lengths to the bridging oxygen. $\operatorname{Re}(1)-$ $\mathrm{O}(7)$ is 1.806 (7) \AA while $\operatorname{Re}(2)-\mathrm{O}(7)$ is 2.056 (7) \AA.

Fig. 1. A view of the $\left[\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{py}_{3}\right]$ molecule showing the atom labeling.

Fig. 2. A stereoscopic view showing the packing arrangement of $\left[\mathrm{Re}_{2} \mathrm{O},\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$.

This pattern of bridging-oxygen distances is similar to that in $\mathrm{Re}_{2} \mathrm{O}_{7}$ and $\mathrm{Re}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ where the Re (tet)O (bridging) distance runs from $1.76-1.80 \AA$ and Re (oct)- O (bridging) is $2 \cdot 05-2 \cdot 10 \AA$. The angle at the bridging oxygen in $\left[\mathrm{Re}_{2} \mathrm{O}_{7} \mathrm{py}_{3}\right]$ is $136.2(4)^{\circ}$. This reflects the crowding caused by the addition of a pyridine molecule as a fifth ligand on $\operatorname{Re}(1)$. The corresponding $\operatorname{Re}(t e t)-\mathrm{O}-\mathrm{Re}(\mathrm{oct})$ angle in $\mathrm{Re}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is linear (179°) and in $\mathrm{Re}_{2} \mathrm{O}_{7}$ runs from 146.6 to 152.4° (Beyer et al., 1970; Krebs et al., 1969).

The coordination sphere around $\operatorname{Re}(2)$ is similar to that found in other octahedral Re^{7+} compounds containing three oxygens and oxygen, nitrogen, or chlorine as the additional ligands. There are three short ($1.71 \AA$) $\mathrm{Re}-\mathrm{O}$ bonds that are mutually cis. The remaining ligands (two pyridine nitrogens and the shared oxygen in this case) are at considerably longer distances from the rhenium atom. Some of the octahedral complexes of the $d^{0} \mathrm{Mo}^{6+}$, for example $\left[\mathrm{MoO}_{3}\right.$ (diethylenetriamine)] (Cotton \& Elder, 1964), show similar distortions from octahedral symmetry. The most important feature of the coordination sphere, shared by both $\operatorname{Re}(1)$ and $\operatorname{Re}(2)$, is the presence of a tightly bound $f a c-\mathrm{ReO}_{3}$ unit. The $\mathrm{Re}-\mathrm{O}$ distances are similar to those found in tetrahedral ReO_{4} compounds, 1.64-1.77 \AA (Lock \& Turner, 1975; Betz \& Hoppe, 1983).

The packing arrangement can be seen in Fig. 2.

References

Beattie, I. R., Crocombe, R. A. \& Ogden, J. S. (1977). J. Chem. Soc. Dalton Trans. pp. 1481-1489.
Betz, T. \& Hoppe, R. (1983). Z. Anorg. Allg. Chem. 500, 23-30.
Beyer, H., Glemser, O. \& Krebs, B. (1968). Angew. Chem. 80, 286; Angew. Chem. Int. Ed. Engl. 7, 295-296.
Beyer, H., Glemser, O., Krebs, B. \& Wagner, G. (1970). Z. Anorg. Allg. Chem. 376, 87-100.
Cotton, F. A. \& Elder, R. C. (1964). Inorg. Chem. 3, 397-401.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2A, 2.3.1. Birmingham: Kynoch Press.
Enraf-Nonius (1980). Structure Determination Package. EnrafNonius, Delft.
Fischer, D. \& Krebs, B. (1982). Z. Anorg. Allg. Chem. 491, 73-82.
Johnson, J. W., Brody, J. F., Ansell, G. B. \& Zentz, S. (1984). Inorg. Chem. 23, 24 15-2418.
Krebs, B., Müller, A. \& Beyer, H. (1968). J. Chem. Soc. Chem. Commun. p. 263.
Krebs, B., Müller, A. \& Beyer, H. (1969). Inorg. Chem. 8, 436-443.
Lis, T. (1979). Acta Cry'st. B35, 1230-1232.
Lis, T. (1983). Acta Cryst. C 39, 961-962.
Lock, C. J. L. \& Turner, G. (1975). Acta Crust. B31, 1764-1765.
Mertis, K. \& Wilkinson, G. (1976). J. Chem. Soc. Dalton Trans. pp. 1488-1497.
Sergienko, V. S., Khodashova, T. S., Porai-Koshits, M. A. \& Butman, L. A. (1977). Koord. Khim. 3. 1060-1068.

[^0]: * Authors to whom correspondence should be addressed.

[^1]: * The $S D P$ package of programs provided by Enraf-Nonius was used for all calculations (scattering-factor tables, Cromer \& Waber, 1974). Anomalous-scattering-factor corrections were included in least-squares calculations.
 \dagger Lists of bond lengths and angles in the pyridine rings, structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39663 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

